Regulation of spontaneous rhythmic activity and organization of pacemakers as memory traces by spike-timing-dependent synaptic plasticity in a hippocampal model.
نویسندگان
چکیده
It is widely believed that memory traces can be stored through synaptic conductance modification of dense excitatory recurrent connections (ERCs) in the hippocampal CA3 region, namely associative memory. ERCs, on the other hand, are crucial to maintain spontaneous rhythmic activity in CA3. Since it is experimentally suggested that synaptic conductances of ERCs are modified through spike-timing-dependent synaptic plasticity (STDP), rhythmic activity might modify ERCs with the presence of STDP because rhythmic activity involves discharges of pyramidal cells. Memory patterns that are stored using ERCs might thus be modified or even destroyed. Rhythmic activity itself might also be modified. In this study, we assumed that the synaptic modification in the hippocampal CA3 was subject to STDP, and examined the coexistence of memory traces and rhythmic activity. The activity of the network was dominated by radially propagating burst activities (radial activities) that initiated at local regions and acted as pacemakers. The frequency of the rhythmic activity converged into one specific frequency with time, depending on the shape of the STDP functions. This indicates that rhythmic activity could be regulated by STDP. By applying theta burst stimulation locally to the network, we found that the stimulation whose frequency was higher than that of the spontaneous rhythmic activity could organize a new radial activity at the stimulus site. Newly organized radial activities were preserved for seconds after the termination of the stimulation. These results imply that CA3 with STDP has an ability to self-regulate rhythmic activity and that memory traces can coexist with the rhythmic activity by means of radial activity.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملInterplay between Short- and Long-Term Plasticity in Cell-Assembly Formation
Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb's postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 69 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2004